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Preface 

The fifth Seminar Nasional Matematika dan Pendidikan Matematika (SENATIK) was held by 
Mathematics Education Study Program, Universitas PGRI Semarang, Indonesia, in 2020. This seminar 
has objectives to improve mathematics teaching, to solve the mathematics problem, and to expand 
mathematics contribution to society. 

Freedom learning is a new policy of the Ministry of Education and Culture of the Republic of 
Indonesia to improve the national education system that seems monotonous. Through freedom learning, 
it is expected that it can create happiness and a joyful learning atmosphere for both students and teachers. 
Learning activities will be effective if the learning atmosphere is enjoyable. By having a joyful learning 
environment and adequate learning facilities, students are expected to be able to construct knowledge 
and support in generating motivation to learn actively. Also, by giving freedom in carrying out learning 
through their learning will train and instill a democratic attitude for students and also shape students’ 

creativity to explore their potential. As technology develops, teachers are expected to use technology 
for joyful learning. Through the integration of technology in the freedom of learning, it is expected that 
effective and efficient learning will be created. Therefore, teachers are required to be able to do 
innovative learning.  In view of that, the Mathematics Education Study Program of Universitas PGRI 
Semarang invites researchers, practitioners, and educators to participate in and contribute to the fifth 
SENATIK 2020 under the theme “Freedom of Learning: Integration Technology in Mathematics 

Learning.” 
The keynote presentations are provided to show the contribution of mathematics educators in 

mathematics education towards research and knowledge sharing. We have three keynote speakers, that’s 
are Prof. Dr. Ratu Ilma Indra Putri, M.Si. (Universitas Sriwijaya, Indonesia). Dr. Irwan Endrayanto 
Aluiciues, S.Si., M.Sc. (Universitas Gajah Mada, Indonesia), and Dr. Achmad Buchori, M.Pd. 
(Universitas PGRI Semarang, Indonesia). We also have two speakers in the workshop session that are 
Dr. Rully Charitas Indra Prahmana (Universitas Ahmad Dahlan, Indonesia) and Dr. Muhtarom 
(Universitas PGRI Semarang). 

On this seminar implementation, from one hundred and thirty-one full paper registers, there are sixty-
nine presenters declared to be qualified. Our wish all the participants would enjoy the seminar, so they 
involve valuable and rewarding, and improve the knowledge and experiences. 
 

Publishing Team 
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Abstract. Diphtheria is an infectious and deadly disease that spread through droplet 

transmission. Nevertheless, diphtheria can be prevented by immunization. One of many ways to 

gain immunity against the disease is by getting a vaccine. Diphtheria vaccine should be given at 

least three times in one's lifetime and will be effective if given every ten years. However, the 

immunization program in developing countries, such as Indonesia, is not optimal yet, and that is 

one of the causes of the outbreak. Therefore, it is necessary to optimize the immunization 

program. In this study, we propose a mathematical model to describe the spreading of diphtheria 

disease. We formulate an optimal control problem on the SEIQR model to minimize the 

spreading through quarantine and optimize the proportion of vaccinated people through the 

immunization campaign. Here, we apply Pontryagin Minimum Principle to find the 

characteristics of the solution of optimal control problems analytically, and DOTcvpSB is used 

to solve the problem numerically. Based on the analytical and numerical solutions, the optimal 

control problem constructed could minimize the spread of the outbreak and its cost function. 

1. Introduction 
Diphtheria is an acute infectious disease caused by a bacteria called Corynebacterium Diphtheriae. This 

disease is transferred through droplets (a very small drop of a liquid) from an infected individual. The 

droplet transmission occurs when the infected one coughs, sneezes, or even talks. The droplets land on 

hands, or other surfaces, that come in close contact with the susceptible ones. The transmission also 

happens when sharing food or kitchen utensils with the infected ones. 

According to the US Centers for Disease Control and Prevention, diphtheria was one of the biggest 

killers for children in the pre-vaccine era. The diphtheria vaccine was developed in 1923, and the rates 

of diphtheria diseases declined significantly [1]. Ideally, the vaccine is given as 3 series since age 2 

years and continue every ten years. Nonetheless, the immunization program in some developing 

countries is still suboptimal, and it causes the outbreak happen again. 

At the end of 2017, the diphtheria outbreak occurred in Indonesia, at least 20 provinces are affected 

by the disease. According to data from the Ministry of Health of Republic Indonesia, up to November 

2017, diphtheria cases were found in 95 regencies and cities in 20 provinces. These provinces are 

Sumatera Barat, Jawa Tengah, Aceh, Sumatera Selatan, Sulawesi Selatan, Kalimantan Timur, Riau, 

Banten, DKI Jakarta, Jawa Barat, and Jawa Timur. Overall, there were 954 cases and 44 deaths. In 2018, 

the number of diphtheria cases reached 1.386 cases, and the number of the deaths was 29 cases [2]. The 

number of the cases in 2018 increased dramatically compared to the previous year. While on 2019, there 
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were 530 cases, and 23 deaths were reported [3]. As a precaution against the outbreaks in the future, it 

is necessary to study the disease and the optimization of the immunization program. 

The dynamics and controls of diseases have been studied in the field of mathematical modeling. The 

first mathematical model for the epidemic spread is SIR model, in which S, I, R denote the number of 

susceptible, infected, and recovered individuals [4]. SIR model have been elaborated to generate 

different types of epidemic spread model, such as SEI, SEIQR, SEIS, SIRS, SEIT, SIQR, SEIRS, et cetera 

[5][6][7][8][9][10][11]. Variables S, E, I, R, T, and Q refers to susceptible, exposed, infected, recovered, 

treatment, and quarantine individuals. Dynamical analysis of the mathematical model is used to 

determine behavior of the system over time. The existence of the controls on SEIT model is proved, and 

the optimal control obtained by applying Pontryagin Minimum Principle [9]. 

Motivated by the fact of suboptimal immunization in Indonesia and those preceding researches, this 

study discusses formulating an optimal control problem on the diphtheria epidemic model with 

vaccination as prevention and quarantine as a treatment. The optimal control problem formulation 

involves the objective function to minimize the number of infected people and the cost of the 

immunization campaigns and quarantine. The optimal control problem is solved analytically and 

numerically to obtain optimal control and state variables. The solutions are then interpreted and verified 

with medical validity. Finally, the optimal control variables obtained and be applied to minimize the 

spread of diphtheria. 

2. Methods 
The mathematical model we propose in this study, is a modification of the former model, that given by 

system (1) [10]. Where variabel N represents total population, parameters p is proportion of vaccinated 

individual within population,   is birth rate,   is probability of interaction between the susceptible 

and infected,   is rate of individual get quarantined each time unit, and   is the rate of recovery. 
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(1) 

The first thing we carry out is modifying the mathematical model to give more relevant 

characteristics of the spread of diphtheria disease by considering other variables and parameters in the 

system. After model modification, we formulate the optimal control problem and solve it by Pontryagin 

Minimum Principle and DOTcvpSB [12][13]. Based on the analytical and numerical solution, the 

optimal control of the problem is obtained, and the result of this study is concluded. 

3. Result and discussion 
This section discusses the modification process, formulation and solution of the optimal control 

problem, and numerical simulation.  

3.1. Mathematical model 
In this study, we consider some characteristics of diphtheria disease and set some assumptions and 

boundaries: 1) Ones that are living in crowded and unclean conditions, who aren't well-nourished, 

children under 5 and adults over 60 years old, especially who don't get up-to-date vaccinations, are at 

high risk of diphtheria infection; 2) People who interact with the infected one can be exposed to the 
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disease. We assume that all the exposed ones, at a certain rate, will be infected by the bacteria. During 

some period, the exposed ones will not show any signs or symptoms. This period is called by an 

incubation period. The incubation period of diphtheria is 2-5 days. After that period, early signs and 

symptoms start to appear. The infected ones can infect others for up to 4 weeks; 3) The infected people 

will get some treatments. We assume all the treatments and medications are included in the quarantine 

state; 4) People in the quarantine period will recover at a certain rate, 5) People who got up-to-date 

vaccinations, and people who already recovered from the infection are assumed to have immunity to 

diphtheria; 6) The number of population is affected by the population growth rate and natural mortality 

rate, 7) To simplify the model, we assume the death rate due to diphtheria is equal to the natural mortality 

rate. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Compartment diagram of the model. 

Considering those preceding assumptions and boundaries in figure 1, we classify the total number of 

population (N) into five subpopulations, i.e., Susceptible (S), Exposed (E), Infected (I), Quarantine (Q), 

and Recovered (R), and obtain a mathematical model given by system (2). 
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(2) 

Where parameter   represents the natural increase rate,  represents natural mortality rate,   is 

the probability of interaction between the susceptible and infected,   is the infection rate,   is the 
handling or treatment rate (the rate of individual get quarantined each time unit), and   is the rate of 
recovery. 

Furthermore, non-dimensional analysis on the system (2) allows us to rewrite the model by the 

system (3). Let 
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are non-dimensional variables, then 

system (2) could be written as the system (3). Where s, e, i, q, and r represent the proportion of the 
number of individual in each subpopulation. 
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(3) 

3.2.  Formulation of optimal control problem 
In this subsection, we formulate an optimal control problem to minimize the spread of diphtheria disease. 

One factor that could suppress the rate of the spread is by optimizing the treatment rate of infected 

people. Besides the treatment rate, another factor that causes the spread of infectious disease is the 

suboptimal immunization. Thus, the proportion of the people who got an up-to-date vaccine must be 

improved. We assume that the number of proportion could be increased by the immunization campaign. 

When people understand the importance of immunization, it will encourage them to get a vaccine. 

Let the effort of the immunization campaign be considered as a control variable 1u and the rate of 

treatment as a control variable 2u . Then, considering those two control variables, 1u  and 2u , into the 

system (3), we obtain the system to be controlled, that is 
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 (4) 

Therefore, the main components of this optimal control problem are: 

1. The mathematical description of the process to be controlled is the system (4). 

2. The objective function of the optimal control problem, which aim to minimize the number of infected 

subpopulation, the cost of treatment, and immunization campaign. The cost of treatment and 

immunization campaigns are assumed to be related to the total expended energy in the system. Thus, 

the objective function is mathematically expressed as equation (5). 
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where C1 and C2 are their weighting factors.  

3. The constraints of the state and control variables are 0,,,, RQIES , pu  10 1 , and 

10 2  u . Which means, immunization campaign could increase the percentage of vaccine recipient 
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coverage, up to (100-p)%, where p depends on the initial vaccine recipient coverage. At the same time, 

the treatment rate could handle up to 100% of the infected people. 

3.3.  Pontryagin minimum principle 
Using Pontryagin Minimum Principle [12] on the optimal control problem formulated in subsection 3.2, 

we obtain equations and system (6), (7), (8), (9), and (10). 

1. Pontryagin H function. 
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3. State equations: 
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With initial conditions, 0)0( SS  , 0)0( EE  , 0)0( II  , 0)0( QQ  , 0)0( RR  , 0)0(1 u , 

0)0(2 u , and 0)0()0()0()0()0( 54321   .

 Solving equations (6)-(10) will obtain the optimal controls and leads to the optimal system (4) with 

objective to function (5). Equation (7) implies that the value of optimal control u1 (immunization 

campaign) is affected by   (population growth rate), and optimal control u2 (treatment rate) is affected 

by the number of infected people (i). Nevertheless, equations (6), (7), (8), (9), and (10) are nonlinear 

system, and it is tricky to find the solution analytically. Thus, we compute it numerically to find the 

solutions of the problem. The results of numerical computations are discussed in subsection 3.4. 

3.4.  Numerical simulation 
This section displays the results of numerical simulation by using DOTcvpSB [13]. The simulations are 

run using the main components of the optimal control problem. The simulations are executed by setting 

S0 = 0.95, E0 = 0, I0 = 0.05, Q0 = 0, R0 = 0, an initial condition of each subpopulation. In other words, in 

the beginning, the number of an infected subpopulation is 5% of the total population, and the remaining 

95% are susceptible. The value of each parameter is shown in table 1. Some of the parameters used are 

taken from the former researches, and some are processed from various data sources. 

Table 1. Parameters of the system. 

Parameter Value Source 

  0.019 [14] 

  0.006 [14] 

  0.570 [10] 

  0.230 [9] 

  0.500 [10] 
  

  

Figure 2. The trajectory of state variables when the proportion of 

vaccinated individual within population is 50% (before 

optimization). 
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Figure 3. The trajectory of state variables when the proportion of 

vaccinated individuals within the population is 50% (after 

optimization). 

We consider two cases of the problem. Case 1, occurs when the proportion of vaccinated individuals 

within the population, before the immunization campaign, is far from the strategic plan target 2020, 

which is 95% (p < 0.95) [2]. In Case 1, we consider the coverage of complete basic immunization in 

areas that covers 50% of the infants (p = 0.5). While in Case 2, we consider a condition when the 

coverage is 90% (p = 0.9). These scenarios are meant to show the difference in optimal control obtained 

in each situation. For Case 1, the simulations are shown in figures 2, 3, and 4. And for Case 2, the results 

are portrayed in figures 5, 6, and 7. 

 

Figure 4. The profile of optimal control variables when the proportion 

of vaccinated individuals within the population is 50%. 
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In figure 2, it is known that Sf  = 0.013, Ef  = 0.036, If  = 1.139, Qf  = 0, and Rf  = 0.064. In other 

words, when the immunization coverage is 50%, and there is no campaign to develop the coverage nor 

quarantine over the infected, the number of infected one's increases from 5% to 114% compared to the 

initial condition, the exposed increases from 0% to 3.6%, the recovered reaches 6.4%. After optimization 

through campaign and quarantine, it is known from Figure 3, that Sf  = 0.436, Ef  = 0.024, If  = 0.030, Qf  

= 0.005, and Rf  = 1.332. This means by immunization campaign and quarantine, the number of the 

infected decreases from 5% to 3%, the exposure is 1.2% less than before optimization, and the recovered 

reaches 133%. Figure 4 shows the optimal value of vaccination campaigns and treatment over time. In 

the beginning of time, the treatment u2 = 0.173, went downhill to u2 = 0.14, then bounced back to u2 = 

0.31, and finally stabilized at its lowest level, u2 = 0.1, that should handle the treatment of 10% of the 

total population over time. While the campaign slowly increases from u1 = 0.052 to u1 = 0.08, with the 

increasing of the infected number, then decreases when the number slowly goes down, and finally 

stabilized at 0%. 

Similar to the first case, the scenario of the second case are displayed in figures 5, 6, and 7. Before 

the optimization, the value of each state variables in the final time is, Sf  = 0.004, Ef  = 0.007, If  = 0.665, 

Qf  = 0, and Rf  = 1.151. From the result, it is known that the number of infected ones increases from 5% 

to 66.5%, and the recovered reached 115%. And after the optimization, the value yielded are, Sf  = 0.173, 

Ef  = 0.002, If  = 0.005, Qf  = 0.001, and Rf  = 1.646. The profile of optimal control variables in Case 2, 

which is shown in figure 7 is slightly different to figure 4. At the earlier time shown in figure 7, the 

campaign, slowly rises from u1 = 0.061 to u1 = 0.07, then continue to decrease until it is close zero. 

While the treatment u2 = 0.188, decreased to u2 = 0.16, then climbed up to u2 = 0.32, and finally stabilized 

at its lowest level, u2 = 0.1. A stark difference lies in the time it takes for the curve to rise and fall, then 

finally stable in its lowest point. The other difference is seen in the decrease in the curves. These 

differences imply that the higher coverage of complete basic immunization in an area, the sooner an 

outbreak could be handled. Furthermore, a comparison between the profile of optimal control variables 

in both cases, it is shown that the coverage of vaccine recipient increased by doing the campaign, from 

50% to 55% in Case 1 and from 90% to 96% in Case 2. And the treatment rate could handle 10-31% in 

Case 1 and 10-32% in Case 2. These percentages may seem low, but the values are the optimal value 

needed to optimize the system with the objective of minimizing the costs. 

 

Figure 5. The trajectory of state variables when the proportion of 

vaccinated individuals within the population is 90% (before 

optimization).  

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Time

S
ta

te
 v

ar
ia

bl
es

 

 

Susceptible
Exposed
Infected
Quarantine
Recovered
Objective function



5th Seminar Nasional Matematika dan Pendidikan Matematika (SENATIK) 2020

Journal of Physics: Conference Series 1663 (2020) 012042

IOP Publishing

doi:10.1088/1742-6596/1663/1/012042

9

 

 

 

 

 

 

 

Figure 6. The trajectory of state variables when the proportion of 

vaccinated individuals within the population is 90% (after 

optimization). 

 

Figure 7. The profile of optimal control variables when the proportion 

of vaccinated individuals within the population is 90%. 

A comparison between the results of the cases is presented in table 2. Comparing the values of before 
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Table 2. Comparison of the state variables on final time, before and after optimal controlling. 

 
Case 1 Case 2 

Before After Before After 

Susceptible 0.01299 0.43623 0.00437 0.17264 

Exposed 0.03575 0.02388 0.00703 0.00221 

Infected 1.13900 0.02992 0.66520 0.00515 

Quarantine 0.00000 0.00516 0.00000 0.00103 

Recovered 0.63920 1.33199 1.15100 1.64613 

Objective function 92.6000 6.76148 68.4400 5.03610 

4. Conclusion 
From the result and discussion, we conclude that the optimal control problem formulated in this study 

succeeds in minimizing the number of infected people, the cost of the campaign, and the treatment.  

Comparing the cases, it is known that the higher proportion of vaccinated individuals in the initial time, 

i.e., before the campaign, the less cost needed to prevent the outbreak, and vice versa. The value of 

optimal control variables varies over time. The effort of the immunization campaign is affected by the 

population growth rate, while the treatment rate is affected by the number of infected people. With the 

objective to minimize the number of infected people and the cost incurred, the optimal effort of 

immunization campaign should develop 5-6% of the coverage of complete basic immunization in an 

area, and the optimal number of infected people that should be quarantined is 10-32%. 
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